Genetic Programming in Data Mining for Drug Discovery
نویسندگان
چکیده
Genetic programming (GP) is used to extract from rat oral bioavailability (OB) measurements simple, interpretable and predictive QSAR models which both generalise to rats and to marketed drugs in humans. Receiver Operating Characteristics (ROC) curves for the binary classifier produced by machine learning show no statistical difference between rats (albeit without known clearance differences) and man. Thus evolutionary computing offers the prospect of in silico ADME screening, e.g. for “virtual” chemicals, for pharmaceutical drug discovery.
منابع مشابه
A Survey of Evolutionary Algorithms for Data Mining and Knowledge Discovery
This chapter discusses the use of evolutionary algorithms, particularly genetic algorithms and genetic programming, in data mining and knowledge discovery. We focus on the data mining task of classification. In addition, we discuss some preprocessing and postprocessing steps of the knowledge discovery process, focusing on attribute selection and pruning of an ensemble of classifiers. We show ho...
متن کاملEmploying data mining to explore association rules in drug addicts
Drug addiction is a major social, economic, and hygienic challenge that impacts on all the community and needs serious threat. Available treatments are successful only in short-term unless underlying reasons making individuals prone to the phenomenon are not investigated. Nowadays, there are some treatment centers which have comprehensive information about addicted people. Therefore, given the ...
متن کاملCombining Decision Trees and Neural Networks for Drug Discovery
Genetic programming (GP) offers a generic method of automatically fusing together classifiers using their receiver operating characteristics (ROC) to yield superior ensembles. We combine decision trees (C4.5) and artificial neural networks (ANN) on a difficult pharmaceutical data mining (KDD) drug discovery application. Specifically predicting inhibition of a P450 enzyme. Training data came fro...
متن کاملDiscovering Hidden Financial Patterns with Genetic Programming
In this chapter, we shall review some early applications of genetic programming to financial data mining and knowledge discovery, including some analyses of its statistical behavior. These early applications are known as symbolic regression in GP. In this type of application, genetic programming is formally demonstrated as an engine searching for the hidden relationships among observations. Her...
متن کاملData Mining with Constrained-Syntax Genetic Programming: Applications in Medical Data Set
This work is intended to discover classification rules for diagnosing certain pathologies. In order to discover these rules we have developed a new constrained-syntax genetic programming algorithm based on some concepts of data mining, particularly with emphasis on the discovery of comprehensible knowledge. We compare the performance of the proposed GP algorithm with a genetic algorithm and wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004